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Turret-Runner-Penetrator Differential Game with
Role Selection

Alexander Von Moll1,2, Daigo Shishika3, Zachariah Fuchs2, and Michael Dorothy4

Abstract—A scenario is considered in which two cooperative
Attackers aim to infiltrate a circular target guarded by a Turret.
The engagement plays out in the two dimensional plane; the
holonomic Attackers have the same speed and move with simple
motion and the Turret is stationary, located at the target circle’s
center, and has a bounded turn rate. When the Turret’s look angle
is aligned with an Attacker, that Attacker is neutralized. In this
paper, we focus on a region of the state space wherein only one
of the Attackers is able to reach the target circle – and even then,
only with the help of its partner Attacker. The Runner distracts
the Turret until it is neutralized, which allows the Penetrator
to gain a positional advantage and guarantee success in hitting
the target circle. We formulate the Turret-Runner-Penetrator
scenario as a differential game over the Value of the subsequent
game of min/max terminal angle which takes place between the
Turret and Penetrator once the Runner has been neutralized. The
solution to the Game of Degree, including equilibrium Turret,
Runner, and Penetrator strategies, as well as the Value function
are given. The case in which the Penetrator can reach the target
before the Turret can neutralize the Runner is formulated and
solved. Finally, the assumption of a priori defined roles/goals is
relaxed and the minimum of the solutions to the two fixed-role
games is shown to be a Global Stackelberg Equilibrium.

I. INTRODUCTION

Cooperation is essential for success in conflicts between
teams of agents. Certain outcomes are only possible through
cooperation; victory could even be contingent on the sacrifice
of a particular agent. In this paper, we consider a cooperative
team of Attackers who seek to collide with a static target that is
guarded by a Turret. The Turret is equipped with a directional
weapon which can be aimed (turned) with bounded rate. When
the Turret’s look angle is aligned with the position of an At-
tacker, that Attacker is considered to be neutralized. Our focus
is on providing a rigorous solution for the case where there
are two Attackers. This is a step towards analyzing the defense
of a static location or asset against “swarms” of Attackers
with a directional defensive weapon. In particular, we aim
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to consider the many Attacker case wherein the Turret must
destroy all (or as many as is possible) Attackers in succession;
the Attackers, meanwhile, coordinate their attack to maximize
successful hits. With the prospective proliferation of lower-
cost unmanned vehicles and guided munitions, solving this
problem is of interest, both from the attackers’ and defender’s
perspective. See, for example, the following excerpt from the
Air Force 2030 Science & Technology Strategy document [1]
(emphasis added):

Swarms of low-cost, autonomous air and space
systems can ... absorb losses that manned systems
cannot... Low-end systems can restore the agility to
attack adversary weaknesses in unexpected ways by
exploiting numbers and complexity.

Various turret and turret-like defense scenarios have been
explored in recent literature. These scenarios may be consid-
ered to be a subclass of target guarding (c.f. [2]–[4]), or even
more generally, reach-avoid problems (e.g., [5], [6]).

The works vary in aspects such as number of agents,
cost functional (particularly integral versus terminal), and
termination conditions. However, the agents’ kinematics are
essentially the same with the slight exception of the Tur-
ret/Defender. In some cases, the Defender is modeled as an
agent with bounded speed who is constrained to move along
the perimeter of the target circle, and in others, the Defender
is stationary and turn-constrained Turret; these two models are
equivalent. In [7], the authors formulated and solved the Turret
Defense Differential Game (along with all of its singularities)
wherein the cost functional included a state-dependent integral
cost. There, a single mobile Attacker sought to balance time-
to-target with avoiding the line of sight of the Turret; the
resulting Attacker trajectories are generally curved in the
Cartesian frame. Reference [8] analyzed a perimeter patrol
scenario wherein termination occurs either when the Attacker
reaches the target or when the Defender and Attacker are
coincident. The solution characteristics of the single-Attacker,
single-Defender and single-Attacker, two-Defender scenarios
were then extended to a many-Attacker, many-Defender vari-
ant wherein the teams maximize (minimize, respectively) the
number of hits on the target. An extension considered a
heterogeneous Defender team comprised of uncontrolled and
controlled patrollers [9]. In [10], [11], the authors solved a
similar scenario but with turret-style termination conditions
(i.e. line of sight neutralization) for the single-Attacker, single-
Turret and single-Attacker, two-Turret cases. This paper is an
extension thereof in which we consider aspects of the two-
Attacker, single-Turret case.
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We consider a particular sub-case wherein one of the
Attackers must sacrifice itself in order for the other Attacker to
reach the target unhindered. Because the Attackers essentially
have different roles, this problem is also related to other
“three-body” problems in the literature, such as the Target
Attacker Defender Differential Game [12], [13]. There, the
Defender/Target team seek to cooperatively maneuver in such
a way for the Defender to intercept the Attacker as far from
the Target as possible. Another example is the single-pursuer,
two-evader cooperative defense scenario presented in [14]
wherein one of the Evaders performs a flanking maneuver on
the Pursuer to drive up the Pursuer’s cost. The work in this
paper is also related to the problem of capture of evaders in
succession [6], [15]–[17] since the Turret is free to aim at
another Attacker once one is neutralized. The role selection
portion of the analysis pertains to the determination of which
Attacker will be pursued by the Turret first thereby fixing
that Attacker to be the sacrificial one. This type of question
(i.e., whether to behave as a ‘Runner’ or ‘Penetrator’) appears
elsewhere in the differential game literature. For example,
whether to behave as the Pursuer or Evader in symmetric
engagements [18], e.g., the Game of Two Cars [19], [20],
and in [21]. Other examples include the determination of
which agent is the leader and which is the follower, as in
the cooperative Homicidal Chauffeur game studied in [22].

The two-Attacker, single-Turret problem is formulated and
solved (for a particular region of the state space) using the
framework of differential game theory (c.f. [2]). In particular,
we address the case in which neither Attacker can guarantee to
reach the target individually, but, through their cooperation, the
Attackers can guarantee that one can. We thus pose and solve
the Turret-Runner-Penetrator Differential Game (TRPDG),
providing both the Value function and equilibrium strategies.
Within the TRPDG, we consider the case where the Runner
is neutralized before the Penetrator reaches the target, and the
case where the Penetrator reaches the target first. This work
extends [23] by solving the latter case and also addressing
the case where the Attackers’ roles are undetermined and the
Turret is allowed to switch. Section II provides a formulation
for the overall two-Attacker, single-Turret problem and breaks
the general problem up based on how many Attackers can be
guaranteed to reach the target. Section III specifies the TRPDG
with Runner neutralization which takes place in the state space
region where exactly one Attacker can be guaranteed to reach
the target; this version of the game ends when the Runner is
neutralized. Section IV provides a formulation and solution for
the TRPDG with early penetration; in this version of the game,
the Penetrator reaches the target circle before the Runner is
neutralized. Section V considers the case where the Turret
is allowed to choose either Attacker to pursue (at any time).
Section VII provides some conclusions and identifies specific
problems to address in future work.

II. PROBLEM FORMULATION

In general, there are two scenarios one may consider: upon
an Attacker’s arrival to the target circle 1) the Turret is
destroyed or 2) the Turret is not destroyed. We focus on

the latter scenario. Concerning a measure of performance,
there are two obvious metrics that may be considered: time
(e.g., time to neutralize, time to penetrate, etc.) or angular
separation (i.e., at the time of penetration), either of which are
perfectly valid. The former makes sense if, for example, the
Attackers represent some kind of munition and thereby angular
separation is not as critical. Meanwhile, the latter may make
sense if the Attackers represent intruders that have secondary
objectives upon reaching the target circle. Both metrics are
considered, e.g., in [11]. In this paper we consider angular
separation to be the metric of interest.

In this formulation, the speed of the two Attackers are equal.
Without loss of generality, the Turret’s maximum turn rate and
the target circle radius are normalized to be 1 according to
the time and distance scaling presented in [10]. Let ν < 1 be
the ratio of the Attackers’ speed and Turret’s maximum turn
rate. Let ẑ = (xR, yR, xP, yP, β) be the state of the system
wherein the two Attackers’ positions are represented by their
2-D Cartesian coordinates and the Turret’s look angle is β
w.r.t. the positive x-axis. The subscript R denotes Runner, and
the subscript P denotes Penetrator. The kinematics are thus

f̂ (ẑ) =


ẋR
ẏR
ẋP
ẏP
β̇

 =


ν cos ψ̂R

ν sin ψ̂R

ν cos ψ̂P

ν sin ψ̂P

uT

 , (1)

where ψ̂R, ψ̂P are the Attackers’ headings measured w.r.t. the
positive x-axis, and uT ∈ [−1, 1] is the Turret’s angular
velocity input (with positive uT corresponding to counter-
clockwise motion). Alternatively, the Attackers’ positions may
be expressed in a polar coordinate system centered on the
target circle’s center. Define z = (rR, θR, rP, θP, β) where
θR, θP are measured relative to the Turret’s look angle. Also
let AR ≡ (rR, θR) and AP ≡ (rP, θP); the Turret is also
denoted T. The associated kinematics are

f (z) =


ṙR
θ̇R
ṙP
θ̇P
β̇

 =


−ν cosψR

ν
rR

sinψR − uT
−ν cosψP

ν
rP

sinψP − uT
uT

 , (2)

where ψR, ψP are measured clockwise w.r.t. the line from the
respective Attacker to the target circle center. Figure 1 depicts
the scenario, showing both coordinate systems specified above.

An Attacker Ai is considered to be neutralized (and re-
moved from the remainder of the playout, if any) if at any
time θi = 0. Conversely, Ai is said to penetrate the target if
it can maneuver all the way to the target circle (ri = 1) while
avoiding the Turret’s line-of-sight. Ideally, both Attackers
would like to penetrate the target without being neutralized.

In the general case, there are three termination cases:
(i) both Attackers penetrate the target, (ii) one Attacker is
neutralized and one penetrates, or (iii) both Attackers are
neutralized. Cases (i) and (iii) are discussed briefly in the
Appendix. The remainder of the paper focuses on the state
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Fig. 1. Two Attacker Scenario – the green color indicates the Cartesian
coordinate system; black represents the polar coordinate system. The Attacker
position angles, θR and θP, are measured w.r.t. T’s look angle and are positive
in the CCW direction (thus θP < 0, as shown).

space region wherein AR,AP /∈ RA at initial time, where
RA is the single-Attacker, single-Turret Attacker’s win region,
defined in (47) in the Appendix. This is the region in which a
single Attacker can be guaranteed to penetrate the target. When
AR,AP /∈ RA, neither Attacker can guarantee successful
penetration of the target by itself; we will construct a subset of
this region in which, through their cooperation and superiority
in numbers, one of the Attackers can successfully penetrate.
Let the region of interest for this state space be defined as

Ω := {z | AR,AP /∈ RA, rR, rP ≥ 1} . (3)

As mentioned previously, angular separation is the metric
of interest, therefore, when it is possible for the Penetrator to
reach the target, the cost functional takes the form

J (z;uT(·), ψR(·), ψP(·)) = |θP(tf )|. (4)

The overall scenario may be broken down into two phases. In
Phase 1, without loss of generality, the Turret pursues AR until
it’s aim is aligned with AR’s position, at which time AR is
taken out of action. Thereby, Phase 2 commences, wherein the
Turret begins pursuing AP. Figure 2 depicts these two phases.

It may also be the case that the AP is able to reach the
target circle prior to AR’s demise, whereby tf ≤ tc. In this
case, there is no Phase 2. We refer to this case as the Early
Penetrator (EP) case. We analyze the case depicted in Fig. 2
in the following section, and the Early Penetrator is the focus
of Section IV. Both of these cases fall under what we refer to
as the Turret-Runner-Penetrator Differential Game (TRPDG).

III. TRPDG WITH RUNNER NEUTRALIZATION

In this section we construct a differential game representing
Phase 1 in Fig. 2 wherein we assume that T neutralizes AR

(before AP is able to penetrate the target). We proceed with
the analysis in the polar coordinate system, utilizing (2), with

Phase 1 (TRPDG)

T

AR

AP

Phase 2 [10]

T

×

AP

AR

neutralized

t0 tc tc tf

Fig. 2. Abstract depiction of the scenario; in Phase 1 T pursues AR while
AP seeks advantageous position for Phase 2, and Phase 2 is the remaining
single-Attacker Game of Angle.

z ∈ Ω. A major assumption is made at this point, which is that
the fate (goals and roles) of each Attacker is set a priori; and,
moreover, these roles cannot be switched during the playout of
the game. Let AR be the first Attacker to be neutralized by T,
regardless of the position of AP. A complete solution, which
involves the agents determining which Attacker T will pursue
and neutralize first, necessarily depends on the solution of this
simpler problem. This restriction is also motivated by some
real-world considerations: often it is costly for a weapon (or
targeting) system to switch targets after it has begun tracking
a particular target.

Concerning the control signals uT, ψR, and ψP, it is
assumed that the agents have full state information (i.e., z
is known) but they do not know the instantaneous control of
the adversary. That is, neither T nor AR, AP are discrimi-
nated. In general, the solution approach utilized throughout
the remainder of the paper, which is based on the formation
of the first-order necessary conditions for equilibrium, yields
an open-loop equilibrium [24, pg. 344]. From the open-loop
solution, the closed-loop (state-feedback) strategies may be
synthesized [24, pg. 344]. In order to constitute an equilibrium,
the proposed strategies would need to satisfy the sufficient
conditions (i.e., yield a Value function that is C1 and satisfy the
Hamilton-Jacobi-Isaacs equation) – however, these conditions
will be satisfied by construction everywhere except for the sin-
gularities. Thus special attention is given to these singularities
to ensure the validity of the solution.

We begin by assuming that AP can reach the target circle
(rP(tf ) = 1) in Phase 2 (c.f. Fig. 2) and that AP prefers to
maximize its angular separation from T at final time. That is,
in the second phase of the engagement that begins when AR is
neutralized, AP plays the Game of Angle (a Game of Degree
over the terminal θP), as specified in [10]. As such, we refer
to AR as the Runner, and AP as the Penetrator. Define the
region in which AP can reach the target circle in Phase 2 as

R2A ≡ {z | AP(tc) ∈ RA} . (5)

The explicit construction and solution of a Game of Degree
wherein AP is also neutralized is left for future work. We
model the first phase of the engagement as a zero-sum
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differential game over the cost functional

J (z;uT(·), ψR(·), ψP(·)) = Φ (z(tc), tc)

= VAP
(rP (tc), θP(tc)) ,

(6)

where z ∈ R2A and VAP
is the Value of the Game of

Angle (i.e., the single-Attacker game, studied in [10]) played
between AP and T starting from t = tc, and tc is the terminal
time of the game, which occurs when AR is neutralized.
Eq. (6) is related to (4) in that by employing equilibrium
strategies in Phase 1, T and AP set themselves up for the
best possible outcome in Phase 2 with regards to |θP(tf )|. We
define the terminal manifold as

φ (z(tc), tc) = θR(tc) = 0. (7)

The Attackers cooperatively seek to maximize J , while the
Turret wants to minimize J . Thus the Value function for the
TRPDG with Runner neutralization is defined as

V (z) = min
uT(·)

max
ψR(·),ψP(·)

J (z;uT(·), ψR(·), ψP(·)) . (8)

The Value function of the Game of Angle is given in [10] as

VAP
(rP, θP) = |θP| − θGoK (rP) , (9)

where θGoK is the single-Attacker, single-Turret Game of Kind
surface defined in (48) in the Appendix. Figure 2 depicts the
overall scenario broken up into two distinct phases: Phase 1,
which terminates at t = tc when AR is neutralized, and Phase
2 wherein AP and T playout the Game of Angle. The Value
function, VAP , of Phase 2 determines, in part, the equilibrium
strategies in Phase 1.

We use the notation zc ≡ z (tc) generally. The Hamiltonian
is

H = λβuT +
∑
i=R,P

−λriν cosψi + λθi

(
ν

ri
sinψi − uT

)
.

(10)
The equilibrium adjoint dynamics are [25]

λ̇ = −∂H

∂z
=


− ν
r2R
λθR sinψR

0
− ν
r2P
λθP sinψP

0
0

 , (11)

and thus λθR , λθP , and λβ are constant. The transversality
condition yields the adjoint values at terminal time [25]

λ>c =
∂Φ

∂zc
+ µ

∂φ

∂zc
(12)

=
[
0 0

∂VAP

∂rPc

∂VAP

∂θPc
0
]

+ µ
[
0 1 0 0 0

]
.

Let the adjoints of AP’s single-Attacker Game of Angle [10]
be written

σ> ≡
[
σr σθ

]
=
[
∂VAP

∂rP

∂VAP

∂θP

]
.

Notice that λβc = 0 and λ̇β = 0, thus λβ = 0 for all t ∈
[0, tc]. Similarly, λθR = µ and λθP = σθ for all t ∈ [0, tc].

Substituting the values of λβ , λθR , and λθP , the Hamiltonian
becomes

H = −λrRν cosψR + µ

(
ν

rR
sinψR − uT

)
− λrPν cosψP + σθ

(
ν

rP
sinψP − uT

)
.

(13)

The Hamiltonian is a separable function of the controls uT
and ψR, ψP, and thus Isaacs’ condition [2], [24] holds:

min
uT

max
ψR,ψP

H = max
ψR,ψP

min
uT

H .

The following result applies generally to differential games
based on these dynamics with a well-defined terminal cost
functional and terminal surface; it arises mainly as a conse-
quence of the fact that the Attackers have simple motion (i.e.,
single integrator dynamics). Most of the later results in this
paper rely heavily on the following:

Lemma 1 (Equilibrium Controls are Constant). For any dif-
ferential game with unconstrained kinematics described by (1)
and a Mayer-type cost functional, the equilibrium strategies
of all the agents are constant. In particular, each Attacker’s
equilibrium trajectory is a straight line (in the Cartesian
plane), and the Turret’s control is either always clockwise or
always counterclockwise.

Proof. Given that the cost functional is of Mayer-type, the
Hamiltonian for the system (1) is

H = λβuT +
∑
i=R,P

λxiν cos ψ̂i + λyiν sin ψ̂i. (14)

Let λ̂ ≡
[
λxR

λyR λxP
λyP λβ

]>
be the adjoint vector

in the Cartesian frame. The equilibrium adjoint dynamics are
given by [2, Eq. 4.5.3]

˙̂
λ = −∂H

∂ẑ
= 0. (15)

Without loss of generality, suppose that the Attackers seek
to maximize the cost functional while the Turret seeks to
minimize it. The equilibrium controls are

cos ψ̂∗i =
λxi√

λ2xi + λ2yi

, sin ψ̂∗i =
λyi√

λ2xi + λ2yi

, i = R,P

(16)
u∗T = − signλβ . (17)

Because the equilibrium adjoint dynamics are 0, λ is constant,
and thus u∗T and ψ̂∗i for i = R,P are also constant. Since
ψ̂i are defined relative to the positive x-axis, the Attackers’
trajectories are straight lines in the Cartesian plane.

Note that if λxi = λyi = 0 for i ∈ {R,P} then the
associated equilibrium heading ψ̂∗i is not uniquely defined
since it would not appear in the Hamiltonian, (14). This
generates singular solutions, which will be addressed later.
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A. Equilibrium Turret & Runner Strategies

Lemma 2 (Equilibrium Turret Strategy). In the differential
game defined by the kinematics, (2), cost functional, (6), and
terminal surface, (7) the Turret’s strategy is

u∗T(t) = k, k ∈ {−1, 1} ,∀t ∈ [0, tc] . (18)

Proof. The fact that k is a constant is due to Lemma 1. The
Turret must minimize the Hamiltonian, (13) – in order to do
so, we see that

u∗T(t) = arg min
uT

H = sign (µ+ σθ) .

Again, both µ and σθ are constant. The sign function ensures
that k ∈ {−1, 1}.
Lemma 3 (Equilibrium Runner Strategy). In the differential
game defined by the kinematics, (2), cost functional, (6), and
terminal surface, (7), the Runner’s trajectory is a straight
line perpendicular to the Turret’s line of sight at the time
of termination.

Proof. The Runner maximizes the Hamiltonian, (13), which
occurs when the vector

[
cosψR sinψR

]>
is parallel with

the vector
[−λrR µ

rR

]>
. Therefore,

cosψ∗R =
−λrR√
λ2rR + µ2

r2R

, sinψ∗R =
µ

rR
√
λ2rR + µ2

r2R

. (19)

At terminal time, λrR(tc) = 0 from (12), which implies
cosψ∗Rc = 0. Thus AR’s terminal heading is ψ∗Rc ∈

{
π
2 ,−π2

}
,

and is perpendicular to T’s line of sight since θRc = 0. The
fact that AR’s trajectory is a straight line in the Cartesian
coordinate system is due to Lemma 1.

It remains to show in which direction (either CCW or CW)
both the Turret and Runner should travel. In the present case,
wherein AR,AP /∈ RA, the biggest benefit for the Attacker
team comes when the Runner, AR, keeps the Turret occupied
for as long as possible, thereby giving the Penetrator, AP,
a chance to reach an advantageous position before T starts
pursuing AP in earnest.

Lemma 4. The sign of the equilibrium Turret and Runner
control inputs are such that

sign (u∗T) = sign (sinψ∗R) = sign (sin θR) . (20)

That is, AR has a component of velocity away from T, and T
turns toward AR.

Proof. There are four possibilities: i) AR away, T towards, ii)
AR towards, T towards, iii) AR away, T away, iv) AR towards,
T away. The cost functional (6) is based on the single-Attacker
Game of Angle between T and AP. AR can only improve the
outcome of the 1v1 game if it can cause T to implement a
control other than the 1v1 equilibrium strategy (e.g., turn away
from AP rather than towards it). First, consider the Turret’s
control - if sign (uT) 6= sign (sin θR) then T is turning away
from AR. In order to neutralize AR, T must go the long way
around the target circle in the worst case. Thus cases iii) and
iv) are excluded by inspection. It remains to determine whether

AR should head i) away from T or ii) towards. At the time
AR would be neutralized in ii), AR would still be alive in i).
The Runner can do nothing to reduce VAP

, but it can increase
VAP

if it can continue to draw T away from AP. Therefore, at
the time and position of neutralization of AR in ii) it is never
worse (and generally better) for AR to be alive, which implies
AR must run away from T.

Remark. The Turret strategy given by Lemma 2 and Lemma 4
corresponds to the single-Attacker circular target defense
strategy from [10] (played against AR).

Remark. If at any time sign (sin θR) = sign (sin θP), then
the Runner’s heading, ψR, is inconsequential (i.e., ψ∗R is not
uniquely defined).

The choice of direction for the Turret is to turn towards the
two Attackers; by pursuing AR, the Turret is also pursuing
AP, and thus the Runner can do nothing to help (or hinder)
AP.

B. Equilibrium Penetrator Strategy

The Penetrator seeks to maneuver in such a way to reach an
advantageous position by the time the Runner is neutralized.
By advantageous, we mean that its terminal position maxi-
mizes the Value of the subsequent differential game which
ensues once the Runner has been neutralized.

The presence of the Dispersal Surface in the single-Attacker
game [8], [10] creates an interesting situation in this two-
Attacker variant. When the state of a system lies on a Dispersal
Surface, the equilibrium controls of one or more agents is
non-unique [2]. In the case of the single-Attacker game, when
cos θ = −1, there is symmetry in the system such that the T
could chase A either counterclockwise (CCW) or clockwise
(CW) and resulting Value of the Game of Angle would be the
same [10]. The consequence of the Dispersal Surface is that
the single-Attacker Value function VAP

is not smooth along the
surface; thus the single-Attacker adjoint vector, σ, is undefined
along the surface. Therefore, AP’s terminal heading, defined
by (22) and (12) as ψ∗Pc = tan−1−σθ/σr, is not well-defined
either. There are two cases: (1) cos θPc 6= −1 and σ is well-
defined (the regular case), and (2) cos θPc = −1 and σ is
undefined (the singular case).

Lemma 5 (Regular Equilibrium Penetrator Strategy). In the
differential game defined by the kinematics, (2), cost func-
tional, (6), and terminal surface, (7) the Penetrator’s equilib-
rium trajectory is a straight line that is aligned with its Game
of Angle equilibrium trajectory at terminal time wherever the
Game of Angle adjoints σr and σθ are defined. Moreover, AP’s
control strategy is given by [8], [10]

sinψ∗P = sign (sin θPc)

(
ν

rP

)
. (21)

Proof. The Penetrator maximizes the Hamiltonian, (13), which
occurs when the vector

[
cosψP sinψP

]>
is parallel with the
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vector
[
−λrP σθ

]>
:

cosψ∗P =
−λrP√
λ2rP +

σ2
θ

r2P

, sinψ∗P =
σθ

rP

√
λ2rP +

σ2
θ

r2P

. (22)

At final time, λrP = σr (due to (12)) and thus tanψ∗P =
−σθ/σr. Thus, at final time, AP’s heading is identical to
the equilibrium Attacker heading from the single-Attacker
scenario [10]. Furthermore, AP’s trajectory is a straight line
in the Cartesian coordinate frame due to Lemma 1, just as it is
in the single-Attacker scenario. Therefore, AP’s regular state
feedback equilibrium control is given by (21).

The geometric interpretation of the following Lemma is that
the Penetrator’s equilibrium trajectory never crosses the β +
π radial. In cases where (21) would cause this, the Runner,
instead, takes a shallower angle such that cos θPc = −1.

Lemma 6 (Singular Penetrator Strategy). In the differential
game defined by the kinematics, (2), cost functional, (6), and
terminal surface, (7) a family of the Penetrator singular tra-
jectories exist which terminate at cos θPc = −1, with rPc > 1.
These trajectories are straight lines with the following state
feedback strategy

sinψ∗P =
χν

rP
, (23)

where χ ∈ [−1, 1] and sign(χ) = sign (sin θPc).

Proof. First, recall that the trajectories are straight lines in
the Cartesian coordinate frame due to Lemma 1. The general
form of the single-Attacker equilibrium control is given in
Lemma 13, in the Appendix:

sinψ∗P = sign (σθ)
ν

rP
.

However, when cos θP = −1, the term sign (σθ) is undefined
because the Value function VAP is not differentiable on the
Dispersal Surface. We replace the quantity sign (σθ) with a
variable χ. When χ = ±1, the solution exactly corresponds
to the limiting case of the regular equilibrium trajectories
described in Lemma 5 where sinψ∗P = ± ν

rP
. If |χ| > 1, the

approach angle to the point (rP, cos θP) = (rPc ,−1) would be
steeper. Backwards integrating from (rPc ,−1) with an angle
|sinψP| > ν

rP
would push the state of the system into a region

that is filled with regular equilibrium trajectories – see Fig. 3.
The former trajectories would be suboptimal (nonequilibrium)
compared to the latter. Therefore, it must be the case that
χ ∈ [−1, 1]. The sign of χ is governed by the sign of sin θPc
as in the regular trajectory case. Note, this proof method
is similar to the method used to solve for the simultaneous
capture condition in [26], [27].

The Dispersal Surface in the single-Attacker game (c.f. [10],
[11]) favors the Turret. While on the Dispersal Surface (θ = π)
the Turret may choose to turn either CW or CCW at max turn
rate and achieve the same cost in equilibrium. However, for the
Attacker to achieve a payoff associated with the equilibrium
it must know the Turret’s choice at t = 0 and choose a
corresponding heading (i.e., CW if T chooses CW and CCW
otherwise). Without knowing uT(0), the Attacker is left to

−4 −3 −2 −1 0 1
x

−2

−1

0

1

2

y

rPc
= 2.5

RA

T
ν

1

Fig. 3. The Penetrator regular (red) and singular (dark orange) trajectories.
The target circle is green; the dashed inner circle is a circle of radius ν
(= 0.8). Note the extension of each regular AP trajectory are tangential to
the ν circle. The position of the Turret at the time of neutralization of AR is
shown by a blue arrow. A family of trajectories is shown wherein rPc = 2.5.
Singular AP trajectories terminate on the dashed black Dispersal Surface. In
the second phase of the scenario, AP terminates at either dark orange filled
circle depending on T’s choice of CCW or CW.

guess; a correct guess will yield the equilibrium payoff, and an
incorrect guess will result in a small loss in the payoff. In the
latter case, the Attacker moves towards T at the initial time
instant and must immediately switch headings. We observe
that the implication for the TRPDG is that the singularity (i.e.,
θPc = π) does not benefit the Attacker team.

−3 −2 −1 0 1 2
x

−3

−2

−1

0

1

2

y

AR

AP

VAP = 1.62 VAP = 1.67

T

Fig. 4. Comparison of AR running away (blue) versus towards (green) T.
The black arrow represents T’s initial position and the dotted lines represent
the boundary of RA at the time instant associated with its color. In the green
case, AP can make maximal usage of the singularity and aim straight at the
target circle. However, the resultant payoff is not as good as in the blue case
wherein all three agents implement the prescribed strategies.

Consider the following example, shown in Fig. 4. One may
be tempted to believe that the singularity could be helpful
to the Attacker team in the sense that, under the prescribed
Penetrator strategy, AP may run directly towards the closest
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point on the target circle (thereby reducing rP as quickly as
possible). In this example, AR, contrary to Lemma 4 runs
towards T who turns CCW (shown in green). AP is placed
directly on the line θRc = π; this is the most “extreme”
example of AP taking a singular path (i.e., being able to set
ψP = 0). The blue trajectory corresponds to AR running away
from T and AP taking the heading prescribed in (21). For the
green case, θPc = π but neutralization of AR happens much
sooner, whereas in the blue case θPc < π but neutralization of
AR is later. The green Penetrator trajectory is continued with
a dashed line for the CCW case up until T reaches the blue
position. In this case, if T goes CCW the entire time, then
clearly it is better for AP to play according to the associated
1v1 strategy of aiming at the tangent to the circle of radius
ν. Hence, the blue trajectories (which follow the prescribed
strategies) yield the best Value for the Attackers.

C. Full solution

Figure 5 shows the state trajectory in the Cartesian coordi-
nate frame for a regular trajectory (with cos θPc 6= −1) and
for a singular trajectory (with cos θPc = −1). The Runner,
AR, has a trajectory which is perpendicular to the Turret’s
line of sight at the time of termination. In the regular case,
the Penetrator, AP, has a trajectory which is aimed at the
tangent of a circle of radius ν; once AR is neutralized, AP

would continue along this course all the way to the target
circle. In the singular case, the Penetrator prefers not to cross
the cos θP = −1 radial at t = tc and therefore has taken a
shallower angle to end up at cos θPc = −1. From here, the
Penetrator takes either the upper or lower trajectory depending
on T’s choice of rotation after neutralizing AR (CW or CCW,
respectively).

Although it wasn’t explicitly stated in the problem formu-
lation, we require that cos θP 6= 0 for all t ∈ [0, tc] because,
otherwise, the Penetrator would have been neutralized while
T was en route to neutralize the Runner. The limiting case
occurs when sign (sin θP) = sign (sin θR) and cos θP → 0
precisely at the moment of neutralization of AR.

In order for AP to penetrate the target, it must reach
RAc ≡ RA (z(tc)), i.e., the one-on-one Attacker win region
at terminal time. The limiting case occurs when APc ∈ ∂RAc

where ∂RAc is the boundary of the one-on-one Attacker win
region at terminal time. That is, the Penetrator is just barely
able to satisfy the necessary condition to ‘win’ (i.e., reach the
target) in the second phase of the engagement. Note that ∂RAc

is the zero-level set of the cost functional, VAP , and thus the
equilibrium Penetrator trajectories terminating at a point on
∂RAc are normal to the surface. The other limiting case is
when AP reaches the target exactly when AR is neutralized.

Define R2A as the set of states in which AP can be
guaranteed to ‘win’, i.e., the set of states in which AP ∈ RA

within tc time while avoiding premature termination. One
boundary of ∂R2A can be constructed geometrically by setting
AP on ∂RAc and backwards integrating the equilibrium
Penetrator strategy ((21) for cos θPc 6= −1, and (23) for
cos θPc = −1). The other boundary is obtained by setting
rP = 1 and backwards integrating. Care must be taken to

eliminate terminal AP positions which result in AP paths
which start and end inside the sector swept by the T’s motion
(which would result in premature termination.) Figure 6 shows
a slice of R2A for a particular initial Turret position (β) and
AR position ((rR, θR)).

It’s clear from Fig. 6 and Eqs. (21) and (23) that the solution
depends on βc (from which θPc is measured), or equivalently,
the terminal time, tc. From Lemmas 2 and 3, along with
Lemma 4, we know that AR has a component of velocity
directed away from T and terminates perpendicular to T’s line
of sight under optimal play, while T moves in the direction of
AR at its maximum turn rate. Thus T must cover an angular
sector at least mod(|θR|, 2π). For the Turret, angle traveled
and time are equivalent since the Turret’s turn rate and the
target circle radius are both 1. Let γ ≥ 0 be the amount of
additional angle the Turret must cover to neutralize the Runner.
Then tT = mod(|θR|, 2π) + γ is time of arrival of the Turret
to the candidate terminal position. The Runner’s trajectory to
the candidate terminal configuration covers an angular sector
γ and is perpendicular to T’s line of sight in the terminal
configuration. See Fig. 7 for a diagram depicting the geometry.
Thus tA = 1

ν rR sin γ is the time of arrival of the Runner to the
candidate terminal position. In the limiting case, the terminal

ν

1

T

rRc

ν

AR
ψRc

rPc

ν
AP ψP

θPc

(a) regular

ν

1

T

rRc

ν

AR
ψRc

rPcν

AP

ψP

θPc

(b) singular

Fig. 5. Representative solutions for the (a) regular and (b) singular cases.
Initial Attacker and Turret positions are denoted by open circles and an arrow,
respectively; terminal positions are filled. The boundary of RA is shown at
t = 0 (grey) and at t = tc (black).



IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, VOL. ##, NO. #, MONTH 2022 8

Runner distance is rRmin
= 1, which gives an upper bound for

γ:

γmax = cos−1
(

1

rR

)
.

Now, define the time difference of arrival to the terminal
configuration as

τ(γ) ≡ tT(γ)− tA(γ)

= |θR|+ γ − 1

ν
rR sin γ,

(24)

with γ ∈ [0, cos−1( 1
rR

)]. Clearly it would be suboptimal for
the Runner to reach a point, stop, and wait for the Turret to
reach that point (i.e., τ > 0); similarly, if the Turret arrives
before the Runner (i.e., τ < 0) the Turret would have had to
pass the Runner en route. Thus, for equilibrium, it must be
the case that both agents arrive in the terminal configuration
simultaneously, i.e., τ∗ = 0.

Lemma 7. The function, τ (γ), (24), which represents the time
difference of arrival of the Runner and Turret to a candidate
terminal configuration, has a unique zero, γ∗, on the interval
[0, cos−1(1/rR)].

Proof. First, (24) is a continuous function of γ since γ and
sin γ are both continuous. For the lower bound of τ , we have
τ(0) = mod(|θR|, 2π), and thus τ(0) > 0. In other words the

−6 −4 −2 0 2 4 6
x

−6

−4

−2

0

2

4

6

y

RA0

RAc

R2A

AR

CW

CCW

T

Fig. 6. A partitioning of the state space for particular β, rR, and θR. The
T and AR trajectories start at the open circles and end at the closed circles.
The Game of Kind surface θGoK is drawn at t = 0 and at t = tc. Note we
do not consider AP positions beginning within RA0

, marked by light grey,
nor positions in which AP penetrates the target before tc, marked by hatched
grey. The yellow region represents R2A, the set of AP initial conditions
which in which it can be guaranteed to successfully penetrate the target. In
the light shaded portion, AP’s motion has a clockwise component, otherwise
it has a counter-clockwise component. The dark shaded portion is filled with
singular trajectories which terminate on cos θPc = −1. There is a segment
of ∂R2A which is a circular arc, marked by orange, which is the locus of
extremal AP singular initial conditions. Premature termination would occur
for any AP positions beginning in the bright blue region, and the faded blue
region represents positions in which RAc cannot be reached; T is able to
neutralize both Attackers in either case.

Runner arrives first – in fact, it travels zero distance, whereas
the Turret covers mod(|θR|, 2π) angular distance. For the
upper bound, we will show that τ(γmax) < 0 by contradiction.
Suppose that τ(γmax) > 0, that is, the Runner arrives to the
candidate terminal configuration before the Turret. The upper
bound, γmax is derived from the limiting case where rRc → 1.
This would mean the Runner was able to reach the target
circle before the Turret could align with it which contradicts
the assumption that AR /∈ RA (which is embedded in the
assumption that z ∈ Ω). Therefore, from the Intermediate
Value Theorem, the function τ(γ) crosses zero on the interval
[0, cos−1(1/rR)].

Also, ∂τ/∂γ = 1−rR/ν cos γ which is strictly negative on
the interval [0, cos−1(1/rR)] since rR/ν > 1 and cos γ > 0
on the interval. Thus τ(γ) is monotonic on the interval, which
implies that the zero crossing is unique.

Because of the uniqueness of γ∗ in which τ(γ∗) = 0 many
standard root-finding methods are suitable for computing it.
The terminal time is simply

tc = mod(|θR|, 2π) + γ∗. (25)

With the value of tc computed, we obtain βc = β +
tc sign (sin θR). From Fig. 6 we see that the effect of
sign (sin θPc) in (21) and (23) is that the Runner’s motion (at
least in RA) has a component of velocity towards the βc + π
radial. The interpretation is that the Runner seeks to end up
behind the Turret at terminal time, which is an advantageous
position for the Game of Angle. Thus, under equilibrium play
by all the agents, the terminal state is

zc =


rRc
θRc
rPc
θPc
βc

 =



rR cos (tc −mod(|θR|, 2π))
0√(

ν2χtc
rP

)2
+
(
rP − νtc

√
1− χ2ν2

r2P

)2
θP − sign (sin θR) tc + sin−1

(
χν2tc
rPrPc

)
β + sign (sin θR) tc


,

(26)
where χ ∈ {−1, 1} for regular trajectories, χ ∈ [−1, 1] for
singular trajectories, and

signχ = sign (sin θPc) = sign ξ, (27)

T

rR

AR

θR

γ

rR sin γ

1

ν

Fig. 7. Relevant geometry for the determination of terminal time tc. Open
circles represent initial positions and the closed red circles indicate candidate
terminal configurations for AR.
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where ξ ∈ [−π, π] is AP’s angle-to-go to the βc + π radial,

ξ = −mod (θP − sign (sin θR) tc, 2π) + π. (28)

The trajectory is singular if AP’s regular strategy, (21),
would cause it cross the βc + π radial, which occurs if

sin−1

 ν2tc

rP

√
r2P + ν2t2c − 2rPνtc

√
1− ν2

r2P

 > |ξ| . (29)

Note the LHS of the above expression is the angular sector
swept (w.r.t. the origin) by AP’s regular strategy in tc time.
If the trajectory is singular, then, by definition cos θPc = −1.
The Law of Sines gives the following relationships:

rPc
sinψP

=
νtc
sin ξ

=
rP

sin (π − |ψP| − |ξ|)
.

The singular AP heading is

ψP = sign (ξ)

(
sin−1

(
rP sin|ξ|
νtc

)
− |ξ|

)
, (30)

and the singular terminal AP distance is

rPc =
νtc sinψP

sin ξ
. (31)

Finally, the Value function is

V (z) = |θPc | − θGoK (rPc) , (32)

where (rPc , θPc) is given by (26) and θGoK is defined in (48).
Note that, in general, the Attacker win regions, RA and R2A,
are larger in size for larger ν.

The Attackers simply aim at their respective terminal point
from (26), and the Turret rotates towards the Runner. Of
course, one or more agents could (to their detriment) deviate
from the strategy which would necessitate recomputing the
solution in practice. For discrete time systems, for example,
it is recommended for the agent implementing its equilibrium
strategy to recompute the solution at each time step.

Figure 8 contains an example in which the Attackers both
lose when operating individually, but one is able to win when
the Attackers cooperate and behave according to the solution
of the TRPDG.
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Fig. 8. Attackers implement single-Attacker strategy, ignoring the presence
of the other Attacker (a); neither Attacker wins. Attackers cooperate, imple-
menting the TRP solution (b); AP wins as a result.

IV. TRPDG WITH EARLY PENETRATION

In this section we analyze the case in which the Penetrator
can reach the target circle prior to the capture of the Runner.
Such is the case, e.g., in the hatched region of Fig. 6.

We assume the Turret prefers to pursue (and eventually
neutralize) the Runner rather than attempt to reduce the
Penetrator’s angular separation at the time of penetration. If
the Turret were to attempt to minimize |θP| it may be the
case AR could reach a more advantageous position – perhaps
even inside RA. We therefore fix the Turret’s strategy to
uT = sign(sin θR) as it is in the previous section. Additionally,
the Runner strategy from the previous section is utilized in the
following analysis.

With the Turret and Runner strategies fixed, the EP case
becomes an optimal control problem for the Penetrator. Let tf
be the time instant at when the Penetrator actually penetrates
the target circle. Then the cost functional is the same as in (4)
and is restated here with some additional notation.

JE = ΦE (z(t), tf ) = |θP(tf )|, (33)

where 0 ≤ tf ≤ tc and the superscript E denotes Early
Penetrator (EP). The Penetrator seeks to maximize its angular
separation at the time of penetration. For the sake of clarity, let
reaching the target circle and penetrating the target be defined
as rP = 1 and rP < 1, respectively. The Value of the EP
optimal control problem, if it exists, is defined as

V E(z0) ≡ max
ψP(·)

JE. (34)

An important distinction must be made at this point as to
whether or not the Penetrator has anything to gain (according
to (33)) by delaying penetration. If, for example, |θ̇P| < 0
when the Penetrator has reached the target circle then it
only stands to reduce its payoff by delaying penetration and
thereby chooses to end the game by penetrating the target
immediately upon arrival. However, delaying penetration is
advantageous, for example, when the Turret’s pursuit of the
Runner is drawing its aim further away from the Penetrator at
the time of arrival at the target (i.e., |θ̇P| > 0).

A. Regular Trajectories Ending in Immediate Penetration

For regular trajectories ending in immediate penetration
it is necessary that 1) sign(sin θP) = sign(sin θR) or 2)
sign(sin θR) sin θP < sign(sin θR)(tc−π). In the former case,
the two Attackers are on the same side w.r.t. the Turret’s
look angle. Once the Penetrator reaches the target circle (i.e.,
rP = 1) it can only be the case that |θ̇P| < 0 because
ν < 1 and thus T has an angular velocity advantage. Case
2) corresponds to sign(sin θPc) = sign(sin θR), and thus the
direction of AP’s motion is the same as AR and T’s (c.f. III-B).
Satisfaction of this condition, alone, is not sufficient. For
example, it may be possible for AP to achieve cos θPf = −1,
thereby the trajectory would be singular (to be discussed in the
following subsections). The regular optimal penetrator strategy
is given by (21) defined over t ∈ [0, tf ].
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B. Delayed Penetration

When the Turret is turning away from the Penetrator, it
is advantageous for the Penetrator to delay penetration until
the Runner’s neutralization at tc; thus tf = tc. We begin by
augmenting the problem definition by including the following
path constraint

m(z) = rP − 1 ≥ 0, ∀t ∈ [0, tc] , (35)

which requires that AP remain on or outside the target circle
until the moment of AR’s neutralization by T. When the
constraint is active, the system may remain constrained if
ṙP = 0. From (2) we have

ṙP = −ν cosψP,

and thus the system will remain constrained if ψP = ±π2 .
Note that the terminal manifold, the zero-level set of φ

(defined in (7)), is only defined over rPc ≥ 1. From (12) the
terminal adjoint values depend on ∂φ

∂zc
. Thus, when rPc = 1,

the quantity ∂φ
∂rPc

is undefined (since the state is on edge of
the bounded plane φ = 0). Consequently, from (22), it is clear
that the optimal Penetrator heading at terminal time, ψ∗Pc , is
undefined. This is another singularity which is similar to the
cos θPc = −1 singularity analyzed in Section III-B.

The following subsections treat the rPc = 1 singularity and
the constrained trajectories. We refer to the rPc = 1 and
cos θPc = −1 singularities as the distance singularity and
angle singularity, respectively.

1) Distance Singularity: The following lemma provides
bounds on the value of the terminal Penetrator heading for
this case.

Lemma 8. For EP, if rPc = 1 and cos θPc 6= −1, the terminal
Penetrator heading is bounded according to

sign(sin θPc) sin−1 ν ≤ sign(sin θPc)ψ
∗
Pc ≤ sign(sin θPc)

π

2
.

(36)

Proof. The inclusion of sign(sin θPc) is necessary to account
for the fact that AP seeks to aim towards the βc + π radial,
which maximizes its payoff (c.f., Section III-B). The upper
bound of (36) is due to the path constraint, rP ≥ 1. A
larger heading angle would yield ṙPc > 0, which implies that
AP had arrived at the target circle from the inside, which
clearly violates the constraint. The lower bound corresponds
to the regular/unconstrained Penetrator control, (21). A smaller
heading angle would push the state of the system into a
region where regular/unconstrained trajectories exist. They, by
definition have rPc > 1 and |θPc | necessarily smaller. Thus
coming in to rPc = 1 with this heading would have been
suboptimal for the Penetrator.

For any |ψPc | ∈
[
sin−1 ν, π2

)
, we have ṙ2 < 0 and thus the

system immediately leaves the constraint in backwards time.
The following Lemma gives the optimal Penetrator heading
for this case.

νκ1

βc + π

rP

νtρ
νtκ
νtνAP

T

Fig. 9. An illustration of three time instants of interest: tν , the time required
for AP to reach the target circle whilst aiming at the tangent to the ν circle,
tκ, the time to reach the target circle whilst aiming at the tangent to the κ
circle, and tρ, the time to reach the target circle tangentially.

Lemma 9. For EP, if the constraint m is active only at
terminal time, that is, if rP > 1 for t ∈ [0, tc) and rPc = 1,
and θPc 6= π the optimal Penetrator heading is

sinψ∗P = sign (sin θPc)

(
κ

rP

)
, (37)

where

κ = +

√
4r2P − (ν2t2c − r2P − 1)

2

4ν2t2c
, (38)

and ν < κ < 1.

Proof. Because the trajectory is unconstrained (except for at
the moment of termination), Lemma 1 applies, which means
AP’s trajectory is a straight line in the Cartesian plane. The
premise of this Lemma is that AP ends on the target circle,
thus we need only determine the line segment joining AP’s
position to a point on the target circle which is of length νtc,
which is the distance AP can cover in the time it takes T
to neutralize AR. Consider a circle of radius κ, ν < κ < 1,
centered at the origin. The distance from AP to a tangent point
on the κ circle is

√
r2P − κ2 (see Fig. 9). Since κ < 1, the line

segment joining AP to the tangent point passes through the
target circle. The distance from this intersection to the tangent
point on the κ circle is

√
1− κ2. Thus the time it takes for

AP to reach the target circle while aiming at a tangent point
on the κ circle is

tκ =
1

ν

(√
r2P − κ2 −

√
1− κ2

)
. (39)

Eq. (38) is obtained by setting the above expression equal
to tc and solving for κ. Finally, (37) is obtained from the
right-triangle geometry, since AP’s aim point is tangent to the
κ circle, and, once again, sign (sin θPc) appears for reasons
described in Lemma 5.

2) Constrained Trajectories: The following Lemma pro-
vides the optimal Penetrator heading for the case where the
trajectory is constrained (or partly constrained).

Lemma 10. For EP, if the constraint m activates at a time
tρ, where 0 ≤ tρ ≤ tc the optimal Penetrator heading is

sinψ∗P =

{
sign (sin θPc)

(
1
rP

)
0 ≤ t < tρ, rP > 1,

sign (sin θPc) tρ ≤ t ≤ tc, rP = 1,
(40)
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where
tρ =

1

ν

√
r2P − 1. (41)

Proof. In this case, the constraint m is activated partway
through the trajectory. The trajectory may be considered as
two parts: an unconstrained arc, U (wherein rP > 1), and a
constrained arc, C (rP = 1). In the transition from U to C, it
is necessary that there exist controls ψP and/or uT that keep
the system on the constraint (i.e., maintain m = 0). This is
referred to as the tangency condition [25]. Here, the Penetrator
heading, ψP, appears in the expression ṁ = ṙP = −ν cosψP,
and thus the system may remain constrained if the Penetrator
applies a heading s.t. ṁ = 0 which is ψP = ±π2 . Over the U
arc, the results of Lemma 1 apply, which states the Penetrator
trajectory is a straight line in the Cartesian plane. Thus the
Penetrator must reach the target circle tangentially, in a straight
line, and proceed thereafter by traveling along its perimeter
until terminal time. The time at which AP reaches the target
circle tangentially, (41), is obtained from the relevant right-
triangle geometry (see Fig. 9). Eq. 40 is then synthesized
from the controls associated with the U and C arcs. The
inclusion of sign(sin θPc) is necessary for reasons discussed
in Lemma 5.

3) Case Determination: From Fig. 9 and the delayed pen-
etration control policies in Lemmas 9 and 10, the conditions
which determine the type of trajectory based on the system’s
current state may be established. Let tκ and tρ be defined as
in (39) and (41), respectively. Also, tν (as depicted in Fig. 9)
can be derived:

tν =
1

ν

(√
r2P − ν2 −

√
1− ν2

)
. (42)

If tν > tc, then AP, employing the regular optimal strategy,
(21), could not have reached the target circle by the time
of AR’s neutralization (then the optimal penetrator control is
governed by Lemma 5). Else if tν ≤ tc < tτ , there exists
a straight line trajectory terminating on the target circle of
length νtc (Section IV-B1, Lemma 9). Otherwise, tc ≥ tτ and
AP can aim at a tangent point to the target circle, reach the
target circle, and apply the constrained control until t = tc
(Section IV-B2, Lemma 10).

C. Max Payoff Possible

In this subsection we address the case in which the upper
limit of the cost/payoff functional, (33), is realizable (i.e.,
J = π). Recall from Section III-B the singularity which
arises when cos θPc = −1 – that is, the Turret is looking
directly away from the Penetrator at terminal time. There,
the terminal Penetrator heading ψ∗Pc was undefined according
to the first-order necessary conditions for equilibrium. This
singularity also comes into play for the two early penetrator
cases discussed so far.

Consider the case where (rPc , cos θPc) = (1,−1) which is
the corner of the bounded plane φ = 0 and the intersection of
the distance and angle singularities. In Section III-B, the angle
singularity gave rise to a symmetric cone of incoming trajec-
tories bounded by ψ∗Pc ∈

[
− sin−1

(
ν
rPc

)
, sin−1

(
ν
rPc

)]
. In

ν
1

tc

T

νtc

νtc

APc

(a)

ν
1

tc

T

νtc

νtc

APc

(b)

Fig. 10. Delayed penetration case (a) away from the angle singularity and
(b) at the angle singularity. The curve shows the locus of initial AP positions
which terminate at the point shown. Blue sections are involutes, green sections
are circular sectors corresponding to the distance singularity, and the purple
section in (b) is a circular sector corresponding to the angle singularity.

Section IV-B1, the distance singularity gave rise to a cone
of incoming trajectories bounded by sin−1 (ν) and π

2 . The
combination of the two singularities results in a cone of
incoming trajectories bounded by,

− π

2
≤ ψ∗Pc ≤

π

2
. (43)

The locus of initial AP positions thus forms a semi-circle of
radius νtc centered on (rPc , cos θPc) = (1,−1). Concerning
constrained trajectories with ψPc = ±π, the optimal trajecto-
ries emanate in both directions in backwards time. Figure 10b
shows the locus of initial Penetrator positions which terminate
on the corner point exactly at tf = tc.

Remark. For initial AP positions which lie inside the locus
shown in Fig.10b the optimal Penetrator heading ψ∗P is non-
unique.

The non-uniqueness of AP’s control in this region is due
to the fact that the cost functional, (33), is upper-bounded by
π. Termination at the corner point ((rP, cos θP ) = (1,−1))
achieves the upper-bound for AP’s payoff; thus any trajectory
which reaches the corner point within tc time is an optimal
trajectory for AP.

D. Full Solution

To summarize the solution of the Early Penetrator optimal
control problem within the TRPDG, we construct the regions
for which each particular Penetrator control is optimal. The
green region in Fig. 11 corresponds to the immediate penetra-
tion case (Section IV-A). For initial AP positions in the yellow
region, the Penetrator aims clockwise and penetrates exactly
at the moment AR is neutralized at t = tc (see Section IV-B).
Lastly, the red region represents all the positions from which
AP can reach (rP, cos θP) = (1,−1). The “Max Value” region
arises from the fact that AP may penetrate the target at any
time tf ∈ [0, tc], and thus we must consider the distance and
angle singularities as shown in Fig. 10b for all possible tf . The
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ν
1

tc

T

νtc Max
Value

νtc

νtc

Immediate

Delayed

Fig. 11. Solution of the Early Penetrator optimal control problem for tc = π
2

.

red region in Fig. 11 is the union of all such regions. Inside
the red region, the Penetrator may be able to reach (1,−1)
for a continuum of different tf .

V. ROLE SELECTION

In the previous sections we considered the roles of AR and
AP to be fixed, a priori, to Runner and Penetrator, respectively.
The Turret adhered to this convention by blindly pursuing the
Runner, regardless of the position of the Penetrator. Moreover,
we restricted the formulation such that the roles could not
switch. We now consider the more likely scenario in which the
roles of the Attackers are not specified; thus the Turret gets
to choose which Attacker to pursue (continuously throughout
the game). Let the Attackers be specified generally as A1 and
A2.

In order to specify the equilibrium “status” of the TRPDG
policies in the context of this more general version of the
problem, we introduce the following definitions.

Definition 1. The Global Stackelberg Equilibrium (GSE) [28],
[29] is an equilibrium over open-loop strategies; the leader
selects a control trajectory (defined over t = 0 to the end of
the game) from a specified class of behaviors and announces
the strategy to the follower. The equilibrium arises when the
follower plays its best response to the announced strategy, and
the leader, knowing this, selects its best control trajectory.

Definition 2. A pair of strategies forms a subgame perfect
equilibrium (or time consistent equilibrium) if the strategies
are in equilibrium for every subgame of the game’s play-
out [30]. That is, in order for the strategy pair to be subgame
perfect, it must never become advantageous for one or other
agent to switch strategies at any point along the game’s
trajectory.

Definition 3. The State-Feedback Nash Equilibrium
(SFNE) [29], [31] is an equilibrium over closed-loop (state-

feedback) strategies corresponding to the saddle point of the
cost functional (in the case of zero-sum differential games).

When a strategy pair constituting the GSE yields a trajectory
which is subgame perfect, the strategy pair is also the SFNE
for all of the points along the trajectory.

For the context of the TRPDG with role selection, let us
consider a new action space for the agents. The Turret must
only decide to turn CCW or CW at t = 0, which effectively
determines which Attacker will be the Penetrator and which
Attacker will be the Runner. From there, all 3 agents proceed
according to their TRPDG equilibrium controls associated
with this assignment (according to Section III). Let the Value
associated with the two assignments be defined

V1,2 (A1,A2) ≡ V
([
r1 θ1 r2 θ2 β

]>)
, (44)

V2,1 (A2,A1) ≡ V
([
r2 θ2 r1 θ1 β

]>)
, (45)

where V is defined in (8). Thus, e.g., V2,1 is the Value of
the TRPDG with A2 assigned to Runner and A1 assigned to
Penetrator.

Lemma 11. The TRPDG strategies given in Section III corre-
sponding to min (V1,2, V2,1) constitute a GSE with the Turret
as the leader and Attackers as the follower. The associated
Value of the Stackelberg Game is VS = min (V1,2, V2,1), where
the subscript S denotes “Stackelberg”.

Proof. By construction, the strategies satisfy the first-order
necessary conditions for equilibrium. Now it remains to show
that the Value, VS, is given by the minimum of the TRPDG
Value associated with each assignment. The Value of the
TRPDG, (32), is mathematically premised on the fact that
the only way to terminate the game is by neutralizing the
Runner (i.e., the terminal surface is θR = 0, see (7)). Thus
the formulation ignores the possibility of neutralization of
the Penetrator (i.e., by driving cos θP → 1). The TRPDG
Value functions (without role selection) satisfy the saddle-
point equilibrium property

J(u∗T, ψi, ψj) ≤ Vi,j ≤ J(uT, ψ
∗
i , ψ

∗
j ), i, j ∈ {1, 2} .

(46)
So, in the general scenario in which T can choose which
Attacker to neutralize, only T’s side (the left side) of the
saddle-point property holds – that is, T can do no worse than
the TRPDG Value associated with each direction. Therefore,
T is free to choose the smaller of the two. The Attackers’ best
response is to respond accordingly, assigning the Runner and
Penetrator roles as dictated by T’s choice. Thus T pursues A1

if V1,2 < V2,1, otherwise, it is better to pursue A2 first.

It appears that the GSE is also the SFNE everywhere in the
state space. However, we leave a rigorous proof of such for
future work.

VI. SIMULATIONS

In this section, we present some simulation results wherein
the prescribed strategies are implemented in a discrete-time
fashion. In particular, the agents’ control signal is held constant
over a fixed time interval (which we denote as ∆t) and all
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agents’ controls are updated synchronously as a function of the
current state only. Neither agent has access to its opponents
current control action (unlike in the Stackelberg version of the
game).

The assignment of roles for the Attackers is not specified.
Instead, the “equilibrium” action involves comparing V1,2
and V2,1 (at the current time) and implementing the TRPDG
controls associated with the lesser Value (as described in the
previous section). The Value of the “wrong” sequence (i.e.,
max (V1,2, V2,1)) is of the utmost importance in demonstrating
whether or not a GSE trajectory is subgame perfect (and thus
also SFNE). Thus, in Fig. 12, both values, V1,2 and V2,1, are
computed along the entire trajectory.

−2 0 2

−2

−1

0

1

2

3

T

A1

A2

0.0 0.5 1.0
t

1.50

1.75

2.00

2.25

2.50

2.75

3.00
V1,2

V2,1

(a) Equilibrium – all agents implement controls associated with
min (V1,2, V2,1).
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2.0

2.2

2.4

2.6

2.8

3.0
V1,2
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(b) Attackers implement equilibrium strategy, and the Turret chooses to pursue
A1 first.

Fig. 12. Simulation results; ν = 0.7, ∆t = 1e − 3. Once the Attacker
designated as Runner crosses into RA, the associated Value of the TRPDG
does not exist, which is the reason for the reason for, e.g., V1,2 stopping early
in (a).

As shown in Fig. 12a, when all 3 agents implement the GSE
strategy (corresponding to A2 being Runner and A1 being
Penetrator) the Value V2,1 is constant and remains the smaller
of the two Values throughout the playout of the game. This
trajectory is subgame perfect, and thus the GSE and SFNE are
equivalent for all points along this trajectory.

Figure 12b demonstrates what happens when T deviates
by pursuing A1 first. Without knowing T’s current or future
control actions, the Attackers proceed with implementing the
equilibrium strategy (treating A2 as the Runner). Around
t = 0.5, the TRPDG Values of the two assignments cross,
and immediately afterwards the Attackers switch to A1 being

Runner and A2 being Penetrator. The Attackers, as the max-
imizers, receive a significant gain over the equilibrium Value
without knowing what T will do or whether it will suddenly
switch. This is a symptom of the saddle-point property of
the equilibrium. However, this example, alone, is far from
sufficient to prove that the GSE and SFNE are equivalent
everywhere.

VII. CONCLUSION

In this paper, we have introduced the two-Attacker, single-
Turret circular target guarding problem. Our focus was on
a region of the state space in which neither Attacker can
guarantee to reach the target, individually. We considered the
case where one Attacker can guarantee to reach the target
when the Turret pursues its fellow Attacker. Within this case,
we posed and solved a differential game which terminates
when the Runner is neutralized, and we posed and solved an
optimal control problem for when the Penetrator can reach the
target before the Runner is neutralized. Most of the analysis
was done under the assumption that Attackers’ roles were
predefined and that no switching could occur. This assumption
was later lifted, and it was shown how the solution already
obtained can be used to determine the “best” roles for the
Attackers and that this corresponds to the Global Stackelberg
Equilibrium.

It remains to formulate and solve a Game of Degree in the
portion of the state space in which the Turret can guarantee
neutralization of both Attackers. Finally, a rigorous proof that
the Global Stackelberg Equilibrium and State Feedback Nash
Equilibrium are coincident across the state space is left for
future work.
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APPENDIX

A. Both Attackers Win

Consider the single-Attacker, single-Turret scenario ana-
lyzed in [8], [10]. The region of win for the Attacker, i.e.,
wherein the Attacker is guaranteed to reach the target circle
under optimal play is defined as [10]

RA ≡ {(r, θ) | θ > θGoK(r)} , (47)

where

θGoK(r) =

√
r2

ν2
− 1 + sin−1

(ν
r

)
−
√

1

ν2
− 1− sin−1 ν.

(48)

Lemma 12. In the two-Attacker, single-Turret scenario with
kinematics given by (2), both Attackers are guaranteed to
reach the target circle under optimal play, that is, rRf =
rPf = 1 if and only if AR,AP ∈ RA.
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Proof. Optimal play is given by the respective single-Attacker,
single-Turret equilibrium control [8], [10]

sinψ∗i = sign (sin θi)

(
ν

ri

)
.

The fact that AR,AP ∈ RA =⇒ rRf = rPf = 1 is due
to each Attacker being able to win individually; the presence
of additional Attackers does not aid the Turret in any way
– both AR and AP are able to win. We now prove that
rRf = rRf = 1 =⇒ AR,AP ∈ RA. Suppose Ai /∈ RA,
the Turret could choose to implement its one-on-one strategy
uT = sign (sin θi) against Ai and be guaranteed to neutralize
Ai with ri > 1.

B. One or more Attackers Lose

Let the Turret’s one-on-one win region be defined RT =
Rc

A. The trivial case occurs when Ai ∈ RA and Aj /∈ RA for
i, j ∈ {R,P}, i 6= j. Clearly, Ai can guarantee a win while
T can guarantee neutralization of Aj . The construction and
solution of a Game of Degree in this region of the state space
is left for future work.

When AR,AP /∈ RA, there is a region of the state space in
which one the Attackers can win and a region in which neither
can win. The former is analyzed in this paper in detail; the
analysis of what the agents should do in the latter region is
left for future work.

C. The One-Attacker, One-Turret Differential Game

Lemma 13 (Form of the single-Attacker strategy). The single-
Attacker game, with kinematics ˙̃z =

[
ṙP θ̇P β̇

]>
, Value

function VAP = maxψP minuT |θPf |, and terminal surface φ =
rPf − 1 = 0 has an equilibrium the Penetrator strategy of the
form

sinψ∗ = sign (σθ)
ν

rP
. (49)

Proof. The Hamiltonian is

H = −σrν cosψP + σθ

(
ν

rP
sinψP − uT

)
+ σβuT, (50)

and the adjoint dynamics for the θP and β states are

σ̇θ = −∂H

∂θP
= 0, σ̇β = −∂H

∂β
= 0. (51)

At final time t = tf , the transversality condition yields the
terminal adjoint value for the β state

σβf =
∂Φ

∂βf
+ µ

∂φ

∂βf
= 0, (52)

where Φ ≡ |θ2f |. Thus σβ = 0 for all t ∈ [0, tf ]. The
Penetrator wishes to maximize the Hamiltonian, while the
Turret seeks to minimize it, giving

sinψ∗P =
σθ

rP

√
σ2
r +

σ2
θ

r2P

, u∗T = sign (σθ) . (53)

Substituting (52) and (53) into (50) gives

H = ν

√
σ2
r +

σ2
θ

r2P
− |σθ|. (54)

The terminal Hamiltonian value is

Hf = − ∂Φ

∂tf
− µ ∂φ

∂tf
= 0. (55)

Since the state dynamics are time-autonomous, H = 0 for all
t ∈ [0, tf ]. Substituting into (54) and solving for σ2

r gives

σ2
r =

σ2
θ

ν2
− σ2

θ

r2P
. (56)

Substituting into (53) yields (49).
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